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THE MOTION OF A PLATE IN A MELTING SOLID MEDIUM* 

G.G. CHERNYI 

The motion of a semi-infinite heated flat plate through a solid medium, 
with the deformation of a melt layer at the plate surface, is 

considered. The flow of the melt is determined in the thin-layer 

approximation taking into account inertial terms in the equation of 
motion and a dissipative term in the heat equation. A procedure for 

determining an exact selfsimilar solution is described and an asymptotic 
method is developed for the approximate representation of the solution 
in terms of simple formulae. Simple estimating formulae are obtained 

for the length of the fluid cavity behind a plate of finite length. 

A solid completely or partly immersed in a solid medium may move in the medium under the 
action of applied forces or by inertia, if the temperature of the body exceeds the melting 
(or vaporization) point of the solid medium; the body will then move together with the liquid 

or gas cavity formed in its vicinity. At the leading edge of the cavity the solid medium 

melts (vaporizes) and at the trailing edge it resolidifies. The cavity may have a free 

boundary or extend to infinity in the medium behind the body. Examples of such motions are 

illustrated in Figs.1 and 2. 

Fig.1 Fig.2 

Fig.3 

Since the fluid inside the cavity is in motion, the source of the heat necessary to melt 
or vaporize the medium will be not only the heated body but also the liquid, in which heat is 
generated by viscous dissipation of part of the mechanical energy delivered to the fluid by 
the body. Under certain conditions of motion (if the body is moving at a high velocity 
relative to the solid medium or if the liquid or gaseous layer is thin), the amount of heat 
produced by viscous dissipation may equal or even exceed the amount necessary to melt or 
vaporize the medium. Under such conditions the total heat flux emitted by the body may vanish 
or even become negative; the heat generated in the cavity will be delivered in that case to 
both the solid medium and the moving body. 

Some problems involving the motion of heated solids in a melting medium have been 
considered previously in the theoretical literature (/l-3/ and elsewhere). These studies 
have been devoted basically to slow motion,under conditions in which inertial effects in the 
liquid phase ("creeping" flow) can be ignored and no allowance need be made for heat produced 
by viscous dissipation. Neither have any estimates been made as to the length of the liquid- 
or gas-filled phase of the wake behind a moving hot body of finite size. 

In recent years various technological applications, as well as the discovery of new 
physical phenomena, have aroused interest in motion under conditions in which inertial 
effects and, in particular, viscous dissipation may no longer be ignored. In /6/ we solved 
the problem of a semi-infinite heated plate moving in a melting or vaporizing medium taking 
both of the above-mentioned effects into account. In the present paper** we continue the 
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'*4tThis paper represents part of a lecture delivered by the author at the 19th International 
Symposium on Fluid Mechanics (Kozubnik, Poland, September, 1989). 
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work of /6/, applying techniques that may form the basis for a general asymptotic approach to 
the problem involving the motion of solids with close-contact melting. 

Let us consider a semi-infinite flat plate of zero thickness moving in its own plane, 
at constant velocity V, in an unbounded homogenous solid medium whose temperature at infinity 
is ?', (Fig.3); it is assumed that the plate has the same temperature T, along its entire 
length, and that this temperature exceeds the melting point T, of the solid medium (T,> T,). 
Near the plate a melt layer forms, of density p, viscosity )_I, thermal conductivity h and 
specific heat C. For simplicity, we shall assume that all these quantities, as well as the 
parallel quantities pa, h, and c, for the solid medium, are constants, independent of the 
pressure p and temperature T. The latent heat h, absorbed when the solid medium melts and 
the temperature T, are also assumed to be constant. 

Whenever we are considering the motion of the liquid in the layer, we shall assume that 
the deformation of the solid medium may be neglected (if necessary, the stress-strain state 
of the medium may be determined from the stress distribution at the solid-liquid interface as 
determined by solving the flow problem; it will follow from the sequel that under certain 
conditions, if the velocity of motion is high or the melt layer is very thin, the loads 
applied to the solid-liquid interface may be significant). 

It will be convenient to consider the plate as stationary, with the solid medium per- 
forming translational motion along the plate. 

Assuming that the later is sufficiently thin, the motion of the melt may be described 
by the usual equations of motion in a thin layer 171: 

Here u and V are the velocity components along and perpendicular to the plate and x and y 
are the coordinates in these directions, with the origin at the leading edge of the plate. 
Eqs.(l) are not applicable in the neighbourhood of the leading edge of the plate, where we 
cannot assume that the velocity components u and V are of different orders of magnitude 
(u < u). 

Unlike the well-known equations of boundary-layer flow for bodies immersed in liquids, 
the function dp/dx in the first equation of (1) is not known but has to be determined, as 
it is in the hydrodynamical theory of lubrication /7f. Clearly, with the usual assumption 
that the density p is a constant, the pressure p(z) in the layer is determined, apart 
from a constant. (The same is true of the motion of bodies of a more general shape, when one 
is determining the pressure distribution in a melt-filled closed cavity). 

We shall assume that, as in the third equation of (l), the temperature distribution T, 
in the solid medium may be determined ignoring the heat flux in the direction along the plate. 
The equation will then be 

Strictly speaking, this equation, too, only holds in a thin layer of the solid medium, 
in the immediate vicinity of the melt layer. Outside this layer the "inner" solution of 
Eq.(2) must be matched with the "outer" solution of the complete heat equation in the moving 
medium. Alternatively, Eq.(2) may be considered to hold if the solid medium is thermally 
anisotropic and conducts heat only crosswise to the plate. 

The system of four Eqs.(l) and (2) is of seventh order. Apart from the quantities which 
depend on x and y, i.e., U, V, T, T,, the pressure distribution p(x) and solid-liquid 
interface y*(s) must 'also be determined. Thus, in order to solve the problem we need nine 
boundary conditions. These will now be listed. 

On the plate, y = 0, x 2 0: 
u = 0, v = 0, T = T, 13) 

At the solid-liquid interface, y=y'(x),x>O 18/: 

p,Vdg* = pudy - pvdx (the equation of continuity) (4) 

h,~d.~=h~d~-!p,J'h&~* (the energy equation) (5) 

M = V, T = T, = T, (6) 

It is not necessary to use the momentum equation at the solid-liquid interface in this 



formulation of the problem of flow in the layer; that equation determines 
ponents in the solid medium at the interface y= y* (4: ~.vv=~~%xv=-pa~~ay. - 

At infinity y-+ do: 
T, = T, 

All these boundary conditions are exact, except for u=v and the 

the stress com- 

(7) 
formulae for the 

stresses (JYY and %I at y = y* (4, which are accurate to the same order as Eq.(l). 
In accordance with the second equation of (l), we introduce the stream function $ (G-Y) 

and change to new variables in Eqs.(ll and (2), conditions (3)-(7) and the expression for 9 : 

u = Vu’, v=-& u’, P = PV2P’, T = T,T’, T, = T,T,’ (8) 

5 = Lx’, Y=&Y’ 

Here L is a quantity with the dimensions of length and Re=pVLIp is the Reynolds number. 
Omitting the primes, we obtain the transformed system of equations: 

au au dp aa, 
uyjy+uF=-yjy+w7 :++o (9) 

u~+~,~~&?$+m~(~~ (10) 

aTs @T, 
r=a= w 
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and boundary conditions 

y = 0, s>O, u = 0, v = 0, T = T, 

y = y*, I> 0, p,dy* = p (dy* - udz) 

++Lz.- $d.z+xdy*, u=l, T=T,=l 

y= 00, T, = T, 

(11) 

Here 

(Pr is the Prandtl number of the liquid in the layer). 
The fact that the parameter a2 in the heat equation for the solid medium (10) incorpor- 

ates the characteristics p and n of the liquid phase is due to the uniform choice of new 
independent variables for all the equations, as in the last two formulae of (8). 

The stream function Q(z, y) and its non-dimensional form $'(x', y’) are related by the 
formula 

Ic,=I/zIvL$' 

(v = CL/P is the coefficient of kinematic viscosity). 
Using the same reasoning as in the solution of Blasius's problem of the boundary layer 

at a semi-infinite plate in a uniform viscous flow /9/, one proves that the solution II, u, T, T, 
of Eqs.(l) and (2) satisfying the boundary conditions (3)-(7) is selfsimilar and depends on 
the natural variable y l/V/(w); the functions y* (z) and p(z) are then determined, apart 
from a constant factor. 

Suppose that a solution of Eqs.(9) satisfying conditions (11) has been found. Then the 
corresponding solution of system (l), (2) (in the original variables) will be 

q=I’m$‘(+ yf;), T=T,T’, T,=T,,,T,’ 

where T’ and T,’ depend on the same arguments as 0' (the dependence on constant non-dimen- 
sional parameters is not indicated), and 
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As the new "length" variable L does not appear in the "real" physical formulation of 
the problem, i.e., in Eqs.(l)-(7), the solution should not depend on this parameter (the 
function p may contain it is an additive term). Hence it follows that the only non-dimen- 
sional variable on which the functions Q’,T’ and T,’ depend is 7) = Y 1/V/(W) ~: Y' J&z 
Then 

9 = 6% (n), 2" = 7',T' (n), T, = T,T,'(n) (12) 

For y* and p as functions of 2 we obtain 
I 

Y * == 11* l/WI', p = -pV% In (X/L) 

Here n* and k are non-dimensional constants and L is an arbitrary constant with the dimensions 

of length. 
In reality, the melting front is distant from the leading edge of the plate by an amount 

LT, whose order of magnitude is given by 

L, -A (T, - T,&,'(P,V$) 

Thus, the selfsimilar solution only holds at distances significantly greater than L, from 

the leading edge of the plate. 
After substituting the stream function I/% (n), the functions T (n)> T, (rl) and 

expressions y* 7: II* 1/x and p =- --12 111 1 into Eqs.(9) and (10) and the boundary conditions 
(11) (once again dropping primes), we obtain the following system of ordinary differential 
equations and boundary conditions: 

'b" + 1~2r~$ i_ k = 0 

pr--’ I’” + 1;2vrr _I_ &,f2 = 0 

T," + (W-‘qT,’ = 0 

p = cp’ (0) = 0, T (0) = T,” 

(I’ (q*) = pa!p, ‘i’ (q*) = 1, T (q*) = 1 

T’ (q*) + ‘/gq* = (ha%) T,’ (q*) 

T, (n*) = 1, T, (w) = T, 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

The nine boundary conditions are sufficient to determine the seven constants of integration 
of Eqs.(13)-(15) and the constants n* and k. 

Eq.(15) for T, can be integrated independently of the other two equations. Omitting 
the standard stages, we will merely present the solution that satisfies conditions (18): 

(19) 

Hence we find the quantity T,' (n*) appearing on the right of the last boundary con- 
dition (17): 

m 

T,‘(q*)=-(I-TT,)exp(-_)[S exp(--&)d4]m’. 

v 

Eq.(13) is not integrable in finite form (for k = 0 it is identical with the well-known 

Blasius equation). Let ‘P (9, k, 4 be any solution of Eq.(13) which satisfies the initial 
conditions 

'p (0) = r$ (0) = 0, cpV (0) = a (21) 

Any such solution can be expressed in parametric form, if we put 
. 

'P = / k I”$ (1 kl’. j ‘1, a 1 k I-“‘) 

where T (t, B) is a solution of the boundary-value problem 

$? + '/ai&i" -t_ 1 = 0; C$ (0) = @' (0) = 0, T" (O)- B 

(the plus sign if k>O and the minus sign if k < 0). 
This notation may be useful in the numerical solution of the problem, but it offers no 

advantages for our analytical treatment and will therefore not be used here. 
For any function v((rl, k,a), the solution of Eq.(14) with initial data 

T (0) = T,, T’ (0) = ,x 
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is 

(22) 

Let us denote any such solution by T(q,a,k,~); the dependence on the prescribed par- 
ameters T,, Pr and ma is not indicated here. 

These solutions 'p and T satisfy conditions (16) at 
condition of (17) at n=rl*, we can express a, k 

and n=U* Using the first three 
7 in terms of n*. After that the 

last condition of (17) with r)=n* (which, we recall, is the heat balance equation at the 
solid-liquid interface) becomes an equation from which n' can be determined as a function of 
all the given parameters. The determination of n* completes the solution of the problem. 

The function rp(q,a, k), i.e., the solution of Eq.(13) satisfying initial conditions 
(21), may be expanded in series 

(23) 

where the first coefficients are 

A, = 0, A, = 0, A, = a, A, = -k, A, = 0, A, .z --‘/& 

A,=2ak, A,=-2kZ, A,=+, A,=-+“k, 

A,, = 64ak2 

and the others (n > 8) satisfy the following recurrence relation: 

A 
Tl+3 1 -=_ _ 
Il! 2 C 

These formulae imply the following structure for series (23): 

The real coefficients cl differ from zero only for 2 =O,l,2,... (and j) such that 
the exponent of a is non-negative. 

At k = 0 the series for 9 becomes a series long since obtained by Blasius: 

Thus, in specific cases, after determining the functions (~(q,k,a) by numerical 
integration of Eq.(13) or by using their series representation (23), one can determine a 
complete solution of the problem. 

We will now exhibit an asymptotic approach to the solution of problem (13)"(18)‘ on the 
assumption that q* is a small quantity; in the process we shall also determine conditions in 
terms of the decisive parameters (Pr, m2, x, aa, p,fp, h&) of the problem, under which n* will 
indeed be small. 

We will first write 'p(q, k, a) as q = q*@(C, k, a, q*), where 6 = n/n*. Eq.(13) for cp 
is then transformed as follows (the prime denotes differentiation with respect to 5): 

0" + '/,n*kDrD" f k" = 0 (24) 

where the new constant k” is related to the old one by k” = kq*‘. Obviously, (D"(O) = an*; 
put aO= an*. 

The conditions for determining @(c, k", u“, n*) will be 
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5 = 0, @ (0) = W(0) = 0, w (0) = a”, 

and the conditions that determine k” and a3 as functions of n* are 

6 = 1, Q (1) = N, W (1) = 1 

Now expand Q, and the constants k” and a0 in series in terms of the small paramaterq*': 

Q, = 'pO + n*' 'pl + ., k” = k, + q*‘k, + ., a0 = a, + q*’ a, + , 

This yields the following equations and boundary conditions for the successive terms of 
the series for @: 

k--l 

'p? + k, = 0, (ok”’ + k, + & JC (P,vX_l_i = 0, k = I, 2, . . e 
i* 

‘p. (0) = ‘po’ (0) = 0, ‘~a’ (0) = a,; ‘po il, = N, vu’ (1) = 1 (N = P,/P) 
(Pk (0) = cpr’ (0) = 0, (pkn (0) = ak; (Pk (1) = ‘I% (1) = 0 

It is easy to show that the functions wx are polynomials of degree 3 f4k; their 
coefficients are power functions of N of degree k + 1. The following are formulae for the 
first two terms of the series for Q and for the constants a" and k”: 

Thus, in the principal approximation the velocity profile U = W (5) is parabolic and 
is associated with a certain pressure gradient, as in the case of Poiseuille-Couette flow 
confined between parallel plates. The fact that this gradient depends only on N shows that 
it is determined in the principal approximation only by the change in the density of the 
medium at the solid-liquid interface. 

Fig.4 illustrates the velocity profile in the principal approximation: 

u = 2 (3N - 1) y/y* - 3 (2N - 1) by*)” (25) 

for a few N values. For N = '1, we get a linear velocity profile; at this value of N (in 
this particular approximation) the pressure gradient is zero. As N falls the pressure 
gradient becomes positive. For N < '1, the velocity profile becomes convex away from the 

flow direction; for N< II3 there is a region of back flow. 

Fig.4 

We emphasize that for N>=!, the maximum velocity exceeds unity and for large N values 

it increases rapidly; a similar rapid increase is observed in the pressure gradient. For 

large N values, therefore (possibly corresponding to transition into the gaseous state), 
allowance must be made for the compressibility of the medium in the layer. 

The velocity profile (in non-dimensional variables) will depend not only on N but also 
on all the other parameters only in the next approximation in terms of n*', through this 
quantity itself, which appears as a factor multiplying the sixth-degree polynomial (Pi (5). 
As to the non-dimensional pressure gradient, it too becomes dependent on all the parameters 
(including N) in the principal approximation through n*' only, as in the simple formula 

-xdpldx = k,lrj*’ + k, 

Eq.(14) for the functions T(n, k,a, z,q*) may be handled by substituting 'p = n*@(c, k, a, 
n*), after which it becomes (the primes again denote differentiation with respect to 5) 



with the conditions 

T” +1/2q*2Pr@T’ + mz Pr@ = 0 

5 =O, T = T,, T’ = ?’ (z’ = q*) 

To determine t3 as a function of n*, we have the boundary condition 

C=l, T=l 

Expressing T(C) and z0 in the form 

T = T, + q**T, + . . ., to = to + q*‘tl + . . . 

we obtain the following equations and initial data for the successive determination of the 
series terms: 

293 

(26) 

k-l 

T,” + m2 Pr 'pr,"2 = 0, Tp + q )‘ QT;(_~_~ + 
i-$ 

m2Prj‘%“&i=0, k-1,2,... 
i$ 

T, (0) = T,, T,’ (0) = r,; T, (0) = 0, T,’ (0) = Q 

Thus, the successive terms T, of the series for T are polynomials of degree 4 (k f- 1): 

T,‘=7,-m2Pr(a,2;--a,k,5a+ $53) 

To save space, we shall not present the eighth-degree polynomial T,(c) here. 

The parameter z" is found as a function of q* from the condition T(l)= 1, which may 

be written as follows in terms of the successive terms of the series for T: 

Hence we find 

T, (1) = 1, T, (1) = 0, k = 1, 2, . . . 

The expression for zr will also be omitted here. 
According to (27), the temperature profile in the principal approximation is linear with 

respect to 5 (T = T, + (1 -T,) 5) if no allowance is made for dissipation; if dissipation is 
included it becomes a polynomial of degree 4 in 5, with coefficients which depend on N, T, 
and m2 Pr. 

The other parameters, in particular, the thermal effect of the phase change, affect the 

non-dimensional temperature profile only in the next approximation in terms of n*', through 
this parameter itself. 

It is clear that the temperature distribution (27) with .T" determined by formula (29) 

is the same as in Poiseuille-Couette flow with the velocity profile (25). 
Without going further with the actual solution of the problem (for the moment), we can 

already determine the equilibrium temperature T"' of the plate, i.e., the temperature at 

which the heat flux from the plate vanishes: T’ (‘;;) = 0. Since T' (0) = To = r0 + n*2'1 + . . 
it follows, using the expression for ~~ in (291, that 

(30) 

or, confining our attention to the principal term, 

T$) = 1 + m2 Pr (6N2 - 4N + 1) 

The expression in parentheses on the right is positive and is a minimum for 
If increasing m2 

N = 'I,. 
(i.e., increasing velocity) makes the equilibrium temperature of the 

plate exceed its actual temperature, the heat flux at the plate will be directed to the plate 
itself and the temperature profile will show a maximum. The position of this maximum 5, and 



294 

the temperature T,,, = T (1;,) may be determined from formulae (28) and (27) by equating 
the right-hand side of (28) to zero, to find <,, and then substituting the result into (27). 
The details are extremely cumbersome (involving the solution of a third-degree equation); 
however, numerical analysis of specific cases is relatively easy, since the equation for &,, 
has only one real root. 

To complete the solution of the problem, we determine n* from the last condition of 
(ll]),which is the heat balance equation at the interface. Transforming the expression r'(q*) 
on the right of this condition by changing from differentiation with respect to n to dif- 
ferentiation with respect to 5, we obtain 

where T,'(n*) is the function defined by (20). 
We now retain the principal term of the expansion in powers of n*, and replace T,' (1) 

by the principal term of its expansion in powers of %I*' as obtained from (28) and (29). 
The result is 

1 ~~(~--T,)‘I*+~~*2=~w-1~-maPr(6N2-88N+3) 
Nn (31) 

This equation, which expresses n* in terms of the decisive parameters of the problem, 
completes the solution. 

As follows from (31), when one is determining the thickness of the layer, allowance for 
the effect of viscous dissipation is equivalent to raising the plate temperature T, to 

T$' _ * UI + m2 Pr (6.W - 8.4' + 3) 

(the quantity in parentheses is always positive; its minimum at N = 21% is Ii,). 
Eq.(31) yields the necessary condition for n* to be small. Solving the equation for n*, 

we obtain 

If the heat flux from the liquid layer accounts mainly for the latent heat of melting of 
the solid medium (the second term on the left of Eq.(31) is more significant), it must be 
true that 

+ > T;” - I or Jk E’r hf 
2P c (T$ .--- T,") 

>I 

Here T, and T, are dimensional quantities. 
If, however, the heat absorbed in melting is insignificant (the first term on the left 

of Eq.(31) more important), we must have 

Here again the temperature is a dimensional quantity. 
Let us determine the force X resisting the motion of the plate (i.e., of one side) over 

a part of length L: 

Confining our attention to the first term of the expansion for a, we get 

(32) 

In the Blasius solution CI = 0.332, so we may write 
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where Xf is the resistive force for a plate immersed in an unlimited flow of viscous liquid, 
moving with velocity V at infinity and having the same p and u as the liquid in the layer. 

As we see from 132), the resistive force X may be very high at small n* values (thus, 
for melting ice xz 1 and at T, - T, = 2" we obtain n* = 0.08; in this case, therefore, 
X I 150 X,). 

We shall also compute the pressure acting on the plate over a length L (assuming that 
p=o at z=L): 

Hence, confining our attention to the first two terms of the expansion for k, we obtain 

r=~(k,+9*akk,+.~*)=~[6(ZN-l)+~*~k,(N)+ ..*] 

Finally, we determine the longitudinal force acting on the solid medium (assuming that 
the force is positive toward negative x values): 

To within the accuracy of our previous considerations. 

Thus, in the principal approximation the forces X and X* are of the order of ,1/q* and 

equal in absolute value (but opposite in direction). The difference of order n* is due to 
the deviation of the momentum flow of the liquid in a cross-section of the layer at x-L 

from the momentum flow of the solid medium near the melting front near the section. 
Indeed, 

The difference between the momentum flows is 

Substituting the values of a, and k, into the expressions in parentheses in the last 
two formulae, we obtain two identical expressions, each equal to Va(3N2-3N+Va). One should 
note that the above difference of momenta is negative in the range of Iv values between the 
zeros of this polynomial, i.e., when 0.13 <N < 0.87; in this range x*<x. 

Suppose now that the moving plate is of finite length L, which we take as our unit of 
length. The melt generated by the motion of the plate forms a liquid wake behind it (Fig.51, 
limited on both sides by solidification fronts. 
solid medium may nevertheless continue to melt, 

(At a certain distance behind the plate the 
because of heat transfer due to viscous dis; 

sipation in the liquid layer). At a certain z = L, + L both fronts merge (if 
closing the melt-filled cavity; 

T,< T,), 
the cavity may also extend to infinity (if T, = T,). 

One should not worry about the fact that if iv + 1 the 
mass of the melt in the cavity is not equal to the mass of 
solid material of the same volume, since the steady motion 

limit of unsteady motion, 
mass balanceis established 

Fig.5 

if the plate enters the solid medium through a 
free surface); otherwise, one must allow for deformation of 
the solid - which is a different problem. 
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Remaining as before in the context of thin-layer theory, we now proceed to determine the 
motion of the liquid behind the plate and the shape of the cavity; to that end we must continue 
our solution of the system of Eqs.(9) and (10) into the region x>L. In so doing we must 
clearly replace the condition at Y = 0 in (11) by the following condition: 

May = 0, v = 0, r3TJay =0 

and consider the system with additional initial data: 
at I = 1 (taking L as the unit of length), 

o<y<y,*, u = UL (y), T = TL (y); y > yr.*, n = 1, T, = T~L (Y) (33) 

where the functions UL (y), TL (y), T*L (y) are those corresponding to our previous selfsimilar 
distributions of the velocity component u and liquid and solid temperatures at 5 = 1. In 
addition, the quantity h, appearing in the parameter x. is the latent heat of solidification 
h I- 

The solution of the non-selfsimilar problem as just formulated is quite complicated and 
may be achieved in specific cases by numerical methods only. We shall therefore confine our- 
selves to a simple approximate solution, which will enable us to give a lower limit for the 
length L, of the liquid wake. To that end, we first ignore the length of the possible 
section of the melting front behind the trailing edge of the plate (see above). Second. of 
the overall heat flux that must be delivered by the liquid wake region to the solid phase, 
which is the sum of the superfluousheatcontent of the liquid flowing into the wake, the heat 
produced by viscous dissipation in the liquid, and the latent heat of solidification, 

we take into consideration only the latent heat of solidification, i.e., only the term 
involving h, in the first integral. Finally, we replace the function T,r.(y) in conditions 
(33) by the smaller quantity T,. 

These three assumptions will obviously reduce the true length of the wake. 
In our approximation, the temperature distribution in the solid phase and the shape of 

the solidification front at s>j may be found independently, without simultaneously con- 
sidering the motion of the liquid. When this is done it is clear that the solution for T, 
is selfsimilar and represented by the previous formula (19). with 

rl = (Y - ?&*)/l/z - 1 (34) 

The second condition (11) for determining I)* becomes 

where T,'(q*) is given by (20). 

f T,‘(q*) = + q* (35) 

Solving (35) for n* and putting n = n* in (34), we obtain the equation of the solidifi- 
cation surface: y = YL* + n*v?=7. Putting y=O, we obtain the coordinate at which the 
solidification fronts merge, which is just the length L, of the liquid wake: 

V/z = --Y*,/n* (36) 

We will simplify (35) for small q * by using expression (20) for T,‘(q*). This gives 

_Kq*=- 2$$5 
ay’n 

(that the value of q* obtained from (35) is indeed small may be ensured by imposing the 
condition c, (T, - T,)lh, (( n/4.) 

Substituting this value of n* into (36) we obtain a closed formula for the length of 
liquid wake fin the original, dimensional variables): 

the 

The coordinate ye* is determined by solving the problem of melt-layer formation in 
accordance with formula (31). 

In the limiting case, ignoring heat transferred to the solid medium during melting (i.e., 
ignoring the first term on the left in (3lf),we obtain 



In another limiting case, when the absorption of heat during melting may be ignored 
(i.e., ignoring the second term on the left in(31)), we get 

The author is indebted to A.A. Shugai for some comments which helped to improve this 
paper. 
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